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Abstract 
While Deterministic Jitter (DJ) is generally agreed to be peak limited, what is less clear is 
how rapidly its PDF decreases near that limit, especially when the DJ is due to crosstalk. 
 
This paper addresses this and related questions by considering a class of responses which 
are similar to real system responses but are described by closed form equations. These 
responses can therefore be evaluated precisely at arbitrary times, allowing the tails of the 
jitter distribution to be explored in detail. The result is a clearer understanding of when 
the tails of a DJ PDF can resemble a Gaussian. 
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1.0 Motivation 
It is generally accepted that for any linear, time-invariant digital channel with constant 
data rate and no impairments other than intersymbol interference, there exists a finite 
boundary to the inside of the eye diagram. Furthermore, the positive side of that finite 
boundary can be calculated by subtracting the absolute values of the intersymbol 
interference due to each symbol in the data stream from the pulse shape for a positive 
data bit (i.e., "one"), and the negative side of that boundary can be calculated using an 
analogous procedure for a negative data bit (i.e., "zero). This is, for example, the 
principle behind peak distortion analysis [1]. 
 
The existence of this finite boundary is also the principle behind the concept of 
deterministic jitter (DJ). Intersymbol interference is a deterministic process in the sense 
that it is determined directly by the data pattern; and the existence of a finite bound on the 
inside the eye leads to the observation that DJ is peak limited. 
 
There remains, however, the question as to exactly how rapidly the calculation of the 
inner eye boundary converges. Will the calculation come within a few percent of the limit 
after a few symbols or will it take hundreds of symbols to obtain an accurate calculation 
of that limit? 
 
Similarly, crosstalk from adjacent data signals is sometimes considered to be a form of 
DJ in the sense that these data signals can be controlled. Crosstalk is also sometimes 
considered to be a form of random jitter (RJ) in that the crosstalk coupling mechanism is 
so complex that the resulting amplitude or jitter PDF due to crosstalk is assumed to be 
Gaussian, and can therefore be combined with other Gaussian disturbances such as the 
effects of shot noise. 
 
The question addressed in this paper is therefore how "sharp" the edges of an eye diagram 
are, either for a desired signal or a crosstalk signal. If only a few symbols are required to 
converge to an inner eye boundary, then the probability density function (PDF) of the 
jitter due to intersymbol interference will drop off quite rapidly near the maximum jitter, 
indicating a "sharp" eye; whereas if many symbols are required to approach the inner eye 
boundary, then the PDF of the jitter due to intersymbol interference will drop off much 
more slowly, indicating a "soft" eye. 
 
The answer to this question has practical implications in that it defines a lower limit to 
the number of adjacent bits which must be included in a peak distortion analysis or a bit 
error rate estimate in order to achieve a desired level of precision. 
 
It also has some practical implications for test equipment which separates DJ from RJ in 
that the general method for doing so is to fit a Gaussian curve to the tails of a measured 
jitter distribution and attribute those tails to RJ. Unless one knows how sharp the edges of 
a deterministic eye are, it is not immediately clear how much of the RJ measured in this 
way is due to black body radiation, shot noise, power supply noise, waiting time jitter, or 
intersymbol interference. Furthermore, with a better understanding of the sharpness of a 



deterministic eye, it may be possible to estimate to how many standard deviations the 
Gaussian curve must be fit in order to reliably separate DJ from jitter due to truly random 
sources. 

2.0 Approach 
A rigorous approach to this question must separate the effects of numerical or model 
accuracy from effects which are fundamental to the phenomenon of intersymbol 
interference. The approach taken here therefore considers intersymbol interference from 
several perspectives. 
 
The first calculation of intersymbol interference uses closed form pulse response 
equations for a widely known class of ideal, band limited spectral shapes which are said 
to possess Nyquist I symmetry [2], and therefore have zero intersymbol interference at 
the center of the eye. The most widely known of these shapes are called cosine rolloff 
channels [2]; however, there is another type of response which could be called "linear 
rolloff" which also has Nyquist I symmetry and more closely resembles the response of a 
broadband digital channel. Since the equations are closed form, the pulse response can be 
calculated for arbitrary times with a high degree of accuracy without any concerns about 
sampling interval or interpolation accuracy. 
 
The second calculation of intersymbol interference is for an electrical transmission path 
described by realistic physical parameters and equalized with a very good equalization 
solution. It will be seen that the resulting pulse response closely resembles a linear rolloff 
pulse response. This should not be too surprising in that the transfer function of the 
transmission path decreases very rapidly with frequency, and the frequency response of 
both the finite impulse response (FIR) and rational transfer function components of the 
equalization solution rolls off for frequencies near and above the data rate as well, 
resulting in a spectral shape which is practically band limited. Furthermore, the 
equalization solution is designed to minimize intersymbol interference in the center of the 
eye, so the resulting frequency response comes close to achieving Nyquist I symmetry, 
just like the linear rolloff frequency responses. 

3.0 Nyquist Pulse Shape Equations 
In order to have zero intersymbol interference in the center of the eye, the Fourier 
transform R(f) of a pulse shape r(t) must have so-called Nyquist I symmetry. If the 
symbol period is T and the Fourier transform of the pulse shape is further constrained to 
be zero for all frequencies above 1/T, then the frequency response at one half the data rate 
must be half of the frequency response at DC. That is, 
 

 
 
Furthermore, the frequency response must exhibit odd symmetry about one half the data 
rate. That is, 
 



 
 
Traditionally, the most popular Nyquist symmetric pulse shapes have been pulse shapes 
for which the frequency response in the region around half the data rate is described by a 
raised cosine function. These are usually called cosine rolloff responses, and are widely 
used in digital radio systems because of their bandwidth efficiency. I did solve the 
equations for a cosine rolloff pulse shape and was able to check my results by 
reproducing the known characteristics of these responses; however, the resulting pulse 
shapes exhibited a ringing which took many symbol times to decay to a negligible value. 
These pulse shapes clearly were not a good representation for the pulse response of a 
high speed serial channel. While I did not pursue the question any further, it would be 
reasonable to suppose that the ringing is due to the rapid fall off of the frequency 
response around half the data rate. 
 
There are, however, many other responses which exhibit Nyquist symmetry, including 
linear rolloff (trapezoidal) and truncated triangular. I chose the linear rolloff shapes 
because they are continuous and have relatively small slope at all frequencies. 
 
The class of linear rolloff pulse responses is defined in the frequency domain by the 
equations 

 
 
where the valid values for the rolloff factor b are between 1 and 0, and T is the bit period. 
 
Taking the Fourier transform of this response, 
 

 



 
Evaluating the integrals, 
 

 
 
This equation, then, describes in closed form the class of pulse shapes studied. 

4.0 Comparison to a Practical Channel 
The pulse response for an example of a practical channel 5 Gb/s channel was compared 
to the family of linear rolloff pulse responses. The model of the practical channel consists 
of a detailed model of a lossy transmission line followed by a receiver containing a 
peaking filter and DFE. 
 
The model of the transmission path is realistic in the sense that the effects of both the 
variation of dielectric constant with frequency [3] and the internal impedance of the 
conductors [4] are included in the model. It is somewhat idealized, however, in that it 
does not include packages, vias, connectors, or termination mismatch. Thus, this model is 
reasonably realistic up to approximately 3 GHz, and increasingly optimistic for 
frequencies higher than 3 GHz. For a 5 Gb/s data rate, the electrical path is a 17dB loss 
path (i.e., 17dB loss at 2.5GHz), which is about in the middle of the typical range of 
practical electrical paths for systems currently in production. 
 
The receiver model includes a linear peaking amplifier followed by clock recovery, a 
decision circuit model, and DFE. Both the clock recovery and DFE are fully adaptive, 
and the decision circuit model includes the effects of minimum latch overdrive. This 
model is described in more detail in a companion paper [5]. 
 
The details of the channel example are: 
Electrical Path 

Materials:   0.5 oz copper conductors and FR4 dielectric 
Length:   1.25m 
Conductor Dimensions: 1.25x10-4 x 1.25x10-5m 
Dielectric Loss Tangent: 0.02 (0.014 + 0.006 for conductor roughness) 
Dielectric Constant:  4.2 @ 1GHz 
Impedance:   50Ω 
Loss:    17dB @ 2.5GHz 



Peaking Filter: 
Zeroes:    -490MHz 
Poles:    -4GHz, -5GHz 

DFE: 
Taps (normalized to 1V): -.019, .024, -.002, -.008 

 
The magnitude of the frequency response for the practical channel is shown on a linear 
scale in Figure 1, along with the frequency response for a 60% linear rolloff pulse shape 
and a 100% linear rolloff pulse shape. The linear scale was chosen to match the way that 
Nyquist symmetry is defined. The 100% linear rolloff pulse shape was included to 
illustrate the available range of linear rolloff responses. 
 

 
Figure 1: Frequency response comparison between practical channel and a 60% 
linear rolloff pulse shape 
 
Note that the 60% linear rolloff response matches the practical channel response 
reasonably well over the range DC to 5GHz, and that the match is particularly good in the 
range 1.5GHz to 3.5GHz. Note also that although the practical channel response does 
have some energy in the range 6GHz to 8GHz, it’s much less than the energy below 
4GHz. 
 
It would be possible to improve the match between ideal and practical responses by 
applying a windowing function such as a Gaussian to the ideal response, thus rounding 
off the sharp corners shown in Figure 1. Since the windowing function would be 



multiplying in the time domain and convolving in the frequency domain, the result would 
be to truncate the linear rolloff response, thus making the edges of its eye somewhat 
harder because some of the contributors to any softening of the edges would be 
eliminated. This additional detail would, however, have detracted somewhat from the 
clarity of presentation without changing the conclusions significantly, and so I chose not 
to go to the extra effort. 
 
Figure 2 compares the impulse response for the practical channel with the impulse 
response which would generate a 60% linear rolloff pulse response. 
 

 
Figure 2: Impulse response comparison between practical channel and a 60% linear 
rolloff pulse shape 
 
Note in Figure 2 that in the impulse response for the practical channel, the impulse 
response of the DFE has been included as a series of impulses following the main 
response. 
 
In Figure 2, although the two impulse responses were shifted to line up in time, their 
vertical scales were purposely left different so that one impulse response did not obscure 
the other. While the main response and the first few post cursor ripples of the responses 
bear some similarity to each other, the linear rolloff impulse response has pre-cursor 
ripples whereas the practical channel impulse response does not. This illustrates that 
while the practical channel response is minimum phase (only left half plane zeroes- what 
many refer to as “causal”), the linear rolloff response is non-minimum phase (includes 
right half plane zeroes- what many refer to as “non-causal”). 
 
Figure 3 shows an eye diagram obtained for the practical channel while Figure 4 is an eye 
diagram for the 60% linear rolloff response. 
 



 
Figure 3: Eye diagram for a practical channel 

 
Figure 4: Eye diagram for a 60% linear rolloff response 
 
While the 60% linear rolloff eye is somewhat cleaner, as one would expect, there is a 
considerable similarity between the two eyes. 
 
One final observation about the comparison between linear rolloff responses and practical 
channels: There is no reason to expect that all practical channel responses will resemble a 
60% linear rolloff response. Rather, the apparent linear rolloff may be different for 
different path losses and equalization solutions, and as yet there is no further data as to 
whether the similarity between channel response and linear rolloff response will tend to 
be better or worse than that demonstrated in this example. 



5.0 Results 

5.1 Peak Distortion Analysis 
A spreadsheet exploration of the inner edge of the eye, as determined through peak 
distortion analysis, indicated that cosine rolloff responses, including 100% cosine rolloff, 
have essentially no guaranteed eye width, even though the guaranteed eye height in the 
exact center of the eye is 1.0 in all cases. Since cosine rolloff spectral shaping is used 
routinely with uniformly good results for microwave digital communications, this 
suggests that at least for this class of pulse shapes, peak distortion analysis is extremely 
conservative. 
 
A similar exploration of linear rolloff responses generated much more promising results. 
Table 1 shows the results obtained when the calculation was based on an 800 bit message 
length. 
 

Rolloff Factor % Eye Width 
1.0 88.61 
0.9 90.62 
0.8 91.84 
0.7 92.08 
0.6 88.6 
0.5 81.22 

Table 1: Eye width of linear rolloff responses as determined by peak distortion 
analysis 

5.2 Jitter PDF 
The PDF of the jitter caused by a 60% linear rolloff pulse response was computed using 
the closed form equation and convolution engine methods similar to those described in 
[6]. To minimize questions of numerical accuracy, the probability distribution function of 
the signal was represented as a histogram with a million bins, as opposed to the thousand 
bins recommended in [6]. For each time, the desired pulse was assumed to be a "one", 
and the probability distribution as a function of amplitude was integrated over all non-
positive amplitudes. The result was then differentiated with respect to time to yield the 
PDF of the jitter. 
 
Different numbers of bit positions were used in order to determine how many adjacent bit 
positions must be included in a calculation of intersymbol interference in order to obtain 
a specified level of accuracy. The results are plotted on a linear scale in Figure 5. Figure 
5 also includes a fit to the curve that is built up as the sum of five Gaussian functions, and 
is therefore called a "Penta-Dirac" function. The standard deviation for the Gaussian 
functions is 0.0055UI. 
 



 
Figure 5: Deterministic Jitter PDF for 60% linear rolloff pulse response 
 
From Figure 5, it would appear that with the exception of the message length of 15, all 
message lengths and the Penta-Dirac fit are in nearly perfect agreement. 
 
Figure 6 plots the same data on a logarithmic scale, however, and it suggests different 
conclusions. 
 

 
Figure 6: Log scale plot of Deterministic Jitter PDF for 60% linear rolloff pulse 
response 
 
Figure 6 suggests the following conclusions: 
 



1. The DJ PDF for this pulse response closely resembles a Gaussian distribution 
down to about 10% of peak density, but then falls off more rapidly than a 
Gaussian distribution. 

 
2. Calculating the PDF from as few as 15 bit positions is not enough to obtain any 

reasonable level of accuracy. 
 

3. Calculating the PDF from either 63 or 127 bit positions produces results with 
useful accuracy. 

 
4. It does not seem necessary to calculate the PDF using more than 127 bit positions. 

 
5. The tails of the PDF do extend to quite low probabilities before falling to 

identically zero. 

5.3 Combining Jitter Components 
Figures 5 and 6 also offer some insight into the general nature of the DJ distribution that 
can be applied to methods used for adding up jitter in a jitter-based performance budget. 
There are two methods for combining DJ that are generally used currently: 
 

1. Add the peak DJ Values. This is a simple computation, which makes it easy to 
combine many components in a performance budget. 

 
2. Convolve the DJ PDFs together to get the combined PDF. This is a much more 

rigorous method, but requires that one knows what the PDF of the DJ is, in 
addition to its peak value. The complexity of this method also makes it poorly 
suited to combining many components in a performance budget. 

 
If the DJ were nearly uniformly distributed between its peak values or, better yet, 
distributed entirely at its peak values in a truly dual Dirac distribution, then the simplicity 
of method 1 above would make it an attractive choice, even if its repeated application 
would necessarily create an increasingly conservative result. 
 
What Figures 5 and 6 suggest, however, is that DJ is far from being uniformly 
distributed. Instead, its PDF would appear to fall off quite substantially from a peak 
density in the middle of the distribution. In point of fact, the standard deviation for the 
DPF in Figure 5 is 0.0187UI whereas the peak deviation from mean is 0.057UI, or three 
times the standard deviation. Thus, any calculation based solely on the peak value of DJ 
is going to be excessively conservative. 
 
Figure 7 contains the same data as Figure 5 except that the “Penta-Dirac” distribution has 
been replaced by a single Gaussian distribution whose standard deviation is the same as 
that for the actual DJ distribution. 
 



 
Figure 7: DJ Distribution with Gaussian fit 
 
While the single Gaussian function does not fit the details of the distribution at all well, it 
does more or less fit the general shape. This suggests a method for combining DJ which 
is a compromise between methods 1 and 2 above: 
 

1. Characterize a DJ distribution by its standard deviation and its peak deviation. 
2. When combining two DJ components, take the rms combination of their standard 

deviations and add their peak deviation together to get a new standard deviation 
and peak deviation. 

3. When using the individual or combined DJ in a performance calculation, estimate 
the PDF of the DJ as a Gaussian with the same standard deviation as the DJ, but 
then truncate that Gaussian at a value equal to the peak deviation of the DJ. 

 
This method is almost as simple as method 1 above, and should yield reasonable 
accuracy for the amount of effort invested. 
 
As an example, consider the case of compounding two instances of the DJ distribution 
shown in Figure 7. Following the steps outlines above, 
 

1. The DJ distribution has a mean of -0.5 UI, a standard deviation of 0.0187 UI and 
a peak deviation of 0.057 UI. 

2. If two instances of this distribution are compounded together, then the result will 
have a mean of -0.5 UI, a standard deviation of the square root of two times 
0.0187, or 0.0264 UI, and a peak deviation of two times 0.057, or 0.114 UI. 

3. Figure 8 shows the convolution of the PDF in Figure 7 with itself, along with the 
truncated Gaussian distribution with the same mean, standard deviation, and peak 
deviation. 

 



 
Figure 8: PDF for two instances of the DJ process, together with the corresponding 
truncated Gaussian 
 
Figure 9 shows the same data as Figure 8, only with a logarithmic vertical scale. 
 

 
Figure 9: Log plot of PDF for two instances of the DJ process, together with the 
corresponding truncated Gaussian 
 
It should be noted in Figure 9 that while the peak deviation of the actual distribution 
should have extended to the same point where the Gaussian was truncated, it appears that 
the convolved PDF fell off too rapidly to be calculated accurately by the fast Fourier 
transform method that was used to perform the calculation. Thus, aside from providing a 



conservative estimate of the peak deviation, the truncated Gaussian appears to be a 
useful fit to the data which was obtained with minimal effort. 

6.0 Crosstalk 
As mentioned in Section 1, crosstalk can be considered to be a form of DJ; and as was the 
case with intersymbol interference, it would be useful to know what the PDF of the DJ 
due to crosstalk is. Since crosstalk is assumed to be small compared to the desired signal, 
the DJ due to crosstalk can be approximated by dividing the amplitude of the crosstalk by 
the slew rate of the desired signal. Therefore, for crosstalk what is really needed is the 
amplitude PDF. This amplitude PDF can also be used directly in either a convolution 
engine or semi-analytical bit error rate estimate. 
 
A distinction must also be made between mesochronous crosstalk (exactly the same data 
rate as the victim, but arbitrary phase) and plesiochronous crosstalk (not quite the same 
data rate as the victim). For mesochronous crosstalk, one must obtain the amplitude PDF 
of the crosstalk as a function of timing relative to the desired signal; whereas with 
plesiochronous crosstalk, it will suffice to average the amplitude PDF for all times. We 
will present both results in this section for the 60% linear rolloff response. 
 
One of the primary mechanisms for crosstalk coupling in high speed serial links is the 
coupling between parallel conductors. As explained in [7], these parallel conductors form 
a microwave directional coupler. The center frequency of this coupler is 
 

 
 
where l is the length of the coupling section, εr is the relative dielectric constant, and c is 
the speed of light in free space. 
 
As a directional coupler, the coupling section also has a characteristic impedance which 
is determined by the dielectric constant, the conductor geometries and the geometry and 
spacing of the ground path. If this characteristic impedance were nearly equal to the 
characteristic impedance of the surrounding system, then there would be near end 
crosstalk coupling but very little far end crosstalk coupling. This is seldom the case, 
however. Usually, the characteristic impedance of the coupling section (as a microwave 
directional coupler) is significantly lower than that of the surrounding system, resulting in 
far end crosstalk caused by reflections internal to the coupler. 
 
For a coupler with relatively weak coupling, the near end coupling impulse response is 
the sum of two impulses: one as the signal enters the coupling section and another of 
opposite sign as the signal leaves the coupling section. This can be determined by 
following the derivation given in pages 802-5 of [7]. The equation is 
 

 



 
where k is the maximum coupling coefficient. 
 
The far end crosstalk coupling has a similar form except that it is delayed by an 
additional pass through the coupling section and multiplied by the reflection coefficient 
created by the difference in characteristic impedance between the coupling section and 
the surrounding system. 
 
The calculations presented here assume that there is only a single coupling section. In 
practice, this is seldom if ever the case; however, it is often the case that there are one or 
two dominant coupling sections combined with numerous smaller contributors. 
 
The calculations performed here assume a coupling section length of 0.15UI, or 4.4mm in 
FR4 at 5Gb/s, and a coupling coefficient k of 0.14. These values would be typical for a 
pair of closely spaced vias in a printed circuit board. 
 
For the 60% linear rolloff response, the coupled crosstalk eye is shown in Figure 10. 
 

 
Figure 10: Crosstalk coupled eye for 60% linear rolloff response 
 
The edges of the eye in Figure 10 are quite well defined, suggesting that for a single 
mesochronous aggressor, the amplitude PDF must definitely be incorporated into the DJ 
or bit error rate calculation explicitly, and should not be approximated by a Gaussian 
function. It should also be noted that similar responses have been measured in real 
systems, although the results were not quite as hard-edged as those shown in Figure 10. 
 
Figure 11 shows the amplitude PDF for a plesiochronous aggressor. This curve was 
calculated by averaging together all of the amplitude PDFs in Figure 10. Figure 11 also 
shows the Gaussian which has the same mean and standard deviation as the amplitude 
PDF. 



 

 
Figure 11: Amplitude PDF for a plesiochronous 60% linear rolloff aggressor 
 
Figure 11 demonstrates that even for a plesiochronous crosstalk aggressor, the Gaussian 
approximation is not a very good one. In Figure 11, the amplitude PDF does not extend 
more than two standard deviations to either side of the mean. 
 
Suppose one were willing to combine independent crosstalk aggressors with essentially 
the same amplitude PDF until the combined PDF approximated a Gaussian down to a 
probability of 10-12. That means that the peak deviation of the amplitude PDF would have 
to occur more than seven standard deviations from the mean. Considering that the peak 
deviation increases linearly with the number of independent terms while the standard 
deviation increases as the square root of the number of terms, one would have to have 12 
crosstalk aggressors with an amplitude PDF similar to that in Figure 11 to get the desired 
approximation to a Gaussian. This may occur in some applications, but will certainly not 
always be the case. 

7.0 Conclusions 
This paper has presented a family of pulse responses that are at least a first order 
approximation to achievable system responses, and yet can be calculated from closed 
form equations. Evaluation of intersymbol interference and crosstalk for these pulse 
responses indicates that DJ distributions truly do have relatively hard edges, but those 
edges occur several standard deviations from the mean. Thus it is no more reasonable to 
approximate DJ as uniformly distributed than it is to approximate it as a Gaussian 
process. This paper has also proposed the use of a truncated Gaussian as an 
approximation which reflects the general nature of the process while remaining 
reasonably simple to calculate. 
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